香蕉成人伊视频在线观看|一本一道波多野结衣av一区|一边吃奶一边添p好爽故事|国产福利视频|欧美亚洲国产片在线播放

返回首頁(yè)

拉格朗日難嗎(拉格朗日的條件)

來(lái)源:www.bjbfljj.cn???時(shí)間:2023-01-24 10:59???點(diǎn)擊:228??編輯:admin 手機(jī)版

1. 拉格朗日的條件

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得

顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

2. 拉格朗日的條件極值

判斷是極大值還是極小值點(diǎn),一個(gè)初步的方法是依靠經(jīng)驗(yàn)和對(duì)問(wèn)題的認(rèn)識(shí)。當(dāng)不能作出有效判斷時(shí),可以求取函數(shù)的二階導(dǎo)數(shù)進(jìn)行判斷,其實(shí)一個(gè)簡(jiǎn)單的方法是比較該極值點(diǎn)的函數(shù)值與相鄰點(diǎn)的函數(shù)來(lái)作出判斷。

至于存在不能化為無(wú)條件極值的問(wèn)題,一般是先不管約束條件建立求解極值點(diǎn)的方程,然后再限制在約束條件下求出最后解答,具體的過(guò)程,建議參看變分原理等數(shù)學(xué)或力學(xué)書(shū)籍,如《計(jì)算動(dòng)力學(xué)》中就有提到,不過(guò)這本書(shū)不是純粹的數(shù)學(xué)推演。

3. 拉格朗日條件極值例題

拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。

正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無(wú)渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無(wú)渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒(méi)有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。

4. 拉格朗日條件極值法

1、多元函數(shù)的條件極值與條件最值問(wèn)題概述。

2、求條件極值的基礎(chǔ)題目。

3、例1的解答(求出全部可能的條件極值點(diǎn))。

4、例1中極值點(diǎn)的判斷及評(píng)注(本題的“不等式”意義)。

5、考研試題中的條件最值問(wèn)題。

6、例2的解答與評(píng)注。

5. 拉格朗日條件極值的方程組怎么解

在數(shù)學(xué)最優(yōu)化問(wèn)題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問(wèn)題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問(wèn)題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)矢量的系數(shù)。

引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程

此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

6. 拉格朗日條件極值怎么判斷是極大值極小值

又稱平動(dòng)點(diǎn),一個(gè)小物體在兩個(gè)大物體的引力作用下在空間中的一點(diǎn),在該點(diǎn)處,小物體相對(duì)于兩大物體基本保持靜止。

這些點(diǎn)的存在由瑞士數(shù)學(xué)家歐拉于1767年推算出前三個(gè),法國(guó)數(shù)學(xué)家拉格朗日于1772年推導(dǎo)證明剩下兩個(gè)。每個(gè)穩(wěn)定點(diǎn)同兩大物體所在的點(diǎn)構(gòu)成一個(gè)等邊三角形。

7. 拉格朗日的條件是什么

拉格朗日出生在意大利的都靈。由于是長(zhǎng)子,父親一心想讓他學(xué)習(xí)法律,然而,拉格朗日對(duì)法律毫無(wú)興趣,偏偏喜愛(ài)上文學(xué)。

直到16歲時(shí),拉格朗日仍十分偏愛(ài)文學(xué),對(duì)數(shù)學(xué)尚未產(chǎn)生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優(yōu)點(diǎn)》,使他對(duì)牛頓產(chǎn)生了無(wú)限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數(shù)學(xué)家。

在進(jìn)入都靈皇家炮兵學(xué)院學(xué)習(xí)后,拉格朗日開(kāi)始有計(jì)劃地自學(xué)數(shù)學(xué)。由于勤奮刻苦,他的進(jìn)步很快,尚未畢業(yè)就擔(dān)任了該校的數(shù)學(xué)教學(xué)工作。20歲時(shí)就被正式聘任為該校的數(shù)學(xué)副教授。從這一年起,拉格朗日開(kāi)始研究“極大和極小”的問(wèn)題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫(xiě)信告訴了歐拉,歐拉對(duì)此給予了極高的評(píng)價(jià)。從此,兩位大師開(kāi)始頻繁通信,就在這一來(lái)一往中,誕生了數(shù)學(xué)的一個(gè)新的分支——變分法。

1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學(xué)院的通訊院士。接著,他又當(dāng)選為該院的外國(guó)院士。

1762年,法國(guó)科學(xué)院懸賞征解有關(guān)月球何以自轉(zhuǎn),以及自轉(zhuǎn)時(shí)總是以同一面對(duì)著地球的難題。拉格朗日寫(xiě)出一篇出色的論文,成功地解決了這一問(wèn)題,并獲得了科學(xué)院的大獎(jiǎng)。拉格朗日的名字因此傳遍了整個(gè)歐洲,引起世人的矚目。兩年之后,法國(guó)科學(xué)院又提出了木星的4個(gè)衛(wèi)星和太陽(yáng)之間的攝動(dòng)問(wèn)題的所謂“六體問(wèn)題”。面對(duì)這一難題,拉格朗日毫不畏懼,經(jīng)過(guò)數(shù)個(gè)不眠之夜,他終于用近似解法找到了答案,從而再度獲獎(jiǎng)。這次獲獎(jiǎng),使他贏得了世界性的聲譽(yù)。

1766年,拉格朗日接替歐拉擔(dān)任柏林科學(xué)院物理數(shù)學(xué)所所長(zhǎng)。在擔(dān)任所長(zhǎng)的20年中,拉格朗日發(fā)表了許多論文,并多次獲得法國(guó)科學(xué)院的大獎(jiǎng):1722年,其論文《論三體問(wèn)題》獲獎(jiǎng);1773年,其論文《論月球的長(zhǎng)期方程》再次獲獎(jiǎng);1779年,拉格朗日又因論文《由行星活動(dòng)的試驗(yàn)來(lái)研究彗星的攝動(dòng)理論》而獲得雙倍獎(jiǎng)金。

在柏林科學(xué)院工作期間,拉格朗日對(duì)代數(shù)、數(shù)論、微分方程、變分法和力學(xué)等方面進(jìn)行了廣泛而深入的研究。他最有價(jià)值的貢獻(xiàn)之一是在方程論方面。他的“用代數(shù)運(yùn)算解一般n次方程(n4)是不能的”結(jié)論,可以說(shuō)是伽羅華建立群論的基礎(chǔ)。

8. 拉格朗日的條件是結(jié)論的

設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點(diǎn),先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對(duì)x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即

L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,

L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,

φ(x,y)=0

由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點(diǎn)。

9. 拉格朗日的條件函數(shù)

拉格朗日定理

數(shù)理科學(xué)定理

拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。

正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無(wú)渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無(wú)渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒(méi)有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。

10. 拉格朗日的條件是充要條件嗎

約瑟夫·拉格朗日

外文名

Joseph-Louis Lagrange

別名

拉格朗日

性別

出生日期

1736年

去世日期

1813年4月10日

國(guó)籍

法國(guó)

出生地

意大利都靈

職業(yè)

數(shù)學(xué)家

物理學(xué)家

代表作品

《關(guān)于解數(shù)值方程》和《關(guān)于方程的代數(shù)解法的研究》

主要成就

拉格朗日中值定理等

數(shù)學(xué)分析的開(kāi)拓者

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: 最新的国产成人精品2021 | 国产精品无码素人福利| 亚洲色成人网一二三区| 亚洲精品一区二区丝袜图片| 精品高潮呻吟99av无码视频| 精品无码人妻一区二区三区不卡| 国产二区交换配乱婬| 久久精品囯产精品亚洲| 国产精品无码免费播放| 亚洲成色综合网站在线| 日韩不卡手机视频在线观看| 国产成人无码一二三区视频| 久久久视频2019午夜福利| 欧美人与动牲交xxxxbbbb| 国产69精品久久久久乱码韩国| 中文丝袜人妻一区二区| 亚洲精品久久国产精品浴池 | 思思久久精品一本到99热| 国产av无码专区亚洲awww| 色综合久久婷婷88| 蜜臀av在线播放| 久久综合五月丁香久久激情| 国产精品丝袜高跟鞋| 国产精品视频二区不卡| 国产精品久久久久影院嫩草| 大香伊蕉在人线免费视频| 浮妇高潮喷白浆视频| 亚洲乱码1卡2卡3乱码在线芒果| 精品久久久久久久无码| 国产精品午夜在线观看体验区| 久久不见久久见免费影院| 久久久精品成人免费观看| 成人免费视频在线观看| 久久大香伊蕉在人线观看热 | 中文字幕人妻无码一区二区三区| 国产精品久久久久久久久软件| 亚洲图片综合图区20p| 又大又粗又爽免费视频a片| 国产精品一区二区av在线观看| 青草国产精品久久久久久| 国产精品天干在线观看|